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SUMMARY 
A variational method for solving directly the full steady Euler equations is presented. This method is based on 
both Newton's linearization and a least squares formulation. The validity of the Euler model and boundary 
conditions to capture the vortex sheet is discussed. A finite element approximation of the groups of 
conservative variables is described and results are given for 3D subsonic flows as well as supersonic flows past 
a flat plate at high angle of attack. 
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INTRODUCTION 

In the last few years intensive studies have been done- by many researchers on numerical 
computation of vortical flows around wings; in particular, around swept and delta wings using 
steady or unsteady Euler or Navier-Stokes models (see for instance References 1-3 and references 
therein). Vortex-dominated flows are of primary interest in aeronautics and space technologies; 
indeed vortices developing above the wing induce low pressure on the upper surface and 
consequently yield an additional lift. Numerous questions still remain; among them we can point 
out: 

1. Where and when does separation occur, in particular on smooth surfaces? 
2. Is the Euler model able to capture separation on a sharp or on a smooth leading edge without 

3. How do vortex sheets develop in relation to the Mach number at infinity and the angle of 
the help of artificial viscosity? 

attack? 
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At the First International Conference on Industrial and Applied Mathematics (Paris 1987) 
several numerical solutions of vortex-dominated flows around wings were presented; in particular 
A. Rizzi showed solutions about a swept wing with a rounded leading edge calculated from Euler 
and Navier-Stokes equations. He noticed that separation occurs in both cases but is located more 
upstream with the Navier-Stokes model, and that the vortex sheets are quite different in shape and 
growth. We believe that, even with the same mathematical model, artificial viscosity and 
numerical dissipation yield quite different vortex sheets from one method to another, especially 
when a smooth leading edge and complex geometry are concerned. 

In this paper we choose to study a very simple geometry, a rectangular flat plate of zero 
thickness. This choice eliminates the difficulty of separation on smooth surfaces and allows us to 
use the Euler model because the separation does not result from viscous effects. Indeed separation 
occurs at the leading edge and the vortex structure rolls up at the tip of the plate, grows until the 
trailing edge and is convected beyond. Our aim is to show that such inviscid separation can be 
obtained from Euler equations which allow rotational effects, without the help of artificial 
viscosity or the Kutta condition, and to give some partial answers to the main questions above. 

In the next section we present the viriational method we use to study the full steady Euler 
equations; we then discuss the appropriate boundary conditions, the finite element approxi- 
mation, the numerical method to solve the linear system and the implementation. The last section 
is devoted to numerical results for several Mach numbers at infinity, angles of attack and meshes. 

DESCRIPTION OF THE METHOD 

In previous works in 2D and 3D4, we used Bernoulli’s theorem for steady flows to reduce the 
equation of conservation of energy to its algebraic form and to write consequently a fixed point 
algorithm on the density. Here we write the whole system as conservative partial differential 
equations in a 3D domain R as follows: 

apu a p v  apw 
__ +- +--=0, ax ay aZ 

where we recognize the equation of conservation of mass, the three equations of conservation of 
momentum and the equation of conservation of energy for the density p, the three components of 
the velocity q=(u, u, w) and the specific internal energy as unknowns. We denote by q the modulus 
of q and by y the ratio of specific heats. One notices that the hypothesis of a perfect gas with 
constant specific heats is made and that the pressure and the total enthalpy are replaced by 
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( y  - 1)pe and ye +$q2 respectively. Here these equations are associated with Dirichlet boundary 
conditions on the plate and at the far-field boundaries of the domain; we impose a tangency 
condition (as is usual for the Euler model) on both sides of the plate (q*n=O, where n is the unit 
normal pointing out from the plate), a symmetry condition on the plate y=O (see Figure 1) and 
some other conditions at the far-field boundaries which are discussed in the next section. 

For the sake of simplicity we present the method in dimension two; the first idea is to linearize 
the first-order hyperbolic non-linear operator L appearing in ( 1 )  by the Newton method. Indeed 
the strong non-linearity of the conservative terms with respect to the unknowns in ( 1 )  and our wish 
to keep the groups of conservative variables to enforce the conservation properties do not allow us 
to write directly a variational formulation. Let us denote the unknowns by l J T  =(p ,  u, u, e); then we 
solve L(U)=O by means of the algorithm 

- Uo given, 
U,+I=U,-U, m = O , .  . . , p ,  

where cT = (0, u", 6, Z) is the solution of the linear system 

apu, apv, ap,; ap,,,.v" apmu, aPmV,  

ax ay ax ay ax ay 
-+-+-+--=--- +-, 

associated with some boundary conditions. Thus at each step of the Newton linearization 0 is the 
solution of a linear problem 

where 9(A)  is a space we define more precisely later with Dirichlet boundary conditions for a 
which are homogeneous because Uo is given satisfying the Dirichlet boundary conditions of the 
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initial problem. In the following we drop the subscript rn; thus the operator A reads 

A =  

d(yeu + +q2u). 
ax 

apuu. 
ax +- 

and the vector F is the left-hand side of ( 1 )  written in.dimension two. Thus Newton linearization 
leads us to solve p times a linear problem with a first-order hyperbolic operator still which has the 
same characteristic curves as the initial one. Indeed, let cp be a function constant on the 
characteristic curves and cpx, cpy be the components of grad cp; then the characteristic polynomial is 
given by the following determinant simplified by linear combinations of rows and columns (since 
in system (3), U is assumed to be regular enough to write A in its non-conservative form): 

I U c p X  + ucpy Pcpx P'PY 0 
0 P ( W X  + UPy) 0 (Y - 1)Pcpx 
0 0 P(U% + UcpJ (Y - l)Pcpy 

- w ( u c p x  + ucpy) 0 0 P(UcpX + w,) 
= P3(Ucp, + ~ c p y ) 2 c ( ~ c p x  + WJ2 - - 1 ) ( d  + cp31. 

i 
As dcp = O  on the characteristic curves, by setting T = dy/dx = - cpxJcpy we get 

det = p3& -w + u)~[( - TU + u)' -ye(? - 1)  ( T ~  + l)] 
and thus the streamlines are zeros of multiplicity two. Moreover, we have two additional real roots 
when the Mach number is greater than or equal to one. Finally, we find that the linear operator 
has the well known characteristic curves of the Euler system and thus the same hyperbolic 
behaviour. This remark leads us to the second idea, which is to solve the linear system (3) by means 
of a least squares method. Thus we minimize over the space 9(A)  the functional 

apuu apu2 a(y- i )be apiiu apuc a 2 p ~ i j  a(y- i )pz 
ax ay dY ax ax ay +-+ +-+-+- + 

dY 
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apuu apuZ a(y - 1)pe)' 
ax ay a Y  

dxdy 

and, computing the Gateau derivative G of J with respect to the unknowns, we get the variational 
formulation 

find O E ~ ( A )  such that 
(Gfo), 0)  = 0 V 0  E 9(A), 

apuu Bpu2 a(y-i)pe a p f u  apuv a 2 p ~ u  a(y-1)pe .(--+-+ +---+-+- ax ax a y  + aY )dxdy 
ax ay aY 

(4) 
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All the above formulae are meaningful if we define the following spaces: 

-tr= (UE(L~(Q)", U>O such that L ( U ) E ( L ~ ( ~ ~ ) ) ~ ) ,  
P = {o E(L~(Q))" such that A n  E (L2(Q))"}, 

Q(A)= (0 E F satisfying some homogeneous Dirichlet boundary conditions). 

We notice that the initial variables (components or groups of components of U) appearing in A n  
can be considered as positive weights in F; we shall make precise the boundary conditions of 9 ( A )  
in the next section. Thus the equality in (3) is understood in the sense of (L2(C2))" and thus almost 
everywhere in R; and all the terms in J ( i f )  and (G(D), 

Now if we take instead of "f the space Vl defined like -tr by replacing L2(Q by H'(Q), i.e. we 
request more regularity on the groups of conservative variables, we can give an interpretation of 
(4). Indeed, let 0 be in @(Q))"; then we get, in the distribution sense, 

are in L'(Q). 

A*(Aa) = A*F, 

where the linear adjoiQt operator A* is given by 

A* = 
~~ 

a. a a. a. a. a. a. 
ax ay ax ay ax aY ax -u-- v- - [u2 + (y - l)e]--uu- - u+- [u2( + y - I)e]- - (@u t ye+ 

a. 
ay -P- 

a. 
a.  a. 
ax ay 

- (Sp.2 + *pu2)& 
a. 
ax . pv- 

- ype - -puu - 

a. a. a. a. 
ax ay ax ay - puu - - ype-  - p u - - 2 p u -  

a. a -  
ax ay - ypu -- y p u -  

Then, with the additional regularity, this equality is meaningful in the sense of (L2(Q))" and 
consequently almost everywhere in Q. Thus we have transformed the first-order hyperbolic linear 
system (2)  into a second-order linear system of parabolic type; for instance, if A reduces to its main 
diagonal, we find that the characteristic polynomial of A*A is 

det = y2p6qy8( - +u + u)"( - 2tu  + U ) ~ ( T U  + 24' 

and thus A*A is a degenerated elliptic operator. In fact A and A* have the same characteristic 
polynomial, and that of A*A is equal to the square ofit. In the next section we show how we can set 
the boundary conditions to get a well posed problem equivalent to problem (3). 
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BOUNDARY CONDITIONS 

For the Euler model one generally imposes different boundary conditions for subsonic flows and 
supersonic flows according to the number of characteristic curves entering in the associated 
unsteady problem. So, on one hand, the whole flow is given upstream and no condition is imposed 
downstream for supersonic flows and, on the other hand, one less condition is given upstream and 
one condition is imposed downstream for subsonic flows. For example, in two space dimensions 
the entropy and the flow direction are imposed in the entrance section and the pressure is specified 
in the exit section in subsonic flow. In three space dimensions this is not always possible, in 
particular for vortex flows where the vortex sheet must propagate downstream. For unsteady 
flows we can use non-reflecting boundary conditions as explained in Reference 6, but the situation 
seems to be less clear in the steady case. For the steady Euler equations we have chosen in our 
methodology to impose all the flow variables upstream and no variable downstream in supersonic 
as well as in subsonic flows. This is consistent with the fact that, on one hand, upstream influence is 
possible in subsonic flow via the centred discretization used and, on the other hand, the 
conservation equations are satisfied near the downstream boundary. Furthermore, the flow 
domain is unbounded and the obstacle has a finite length, so there is no explicit physical boundary 
condition to apply. 

We show now how the least squares formulation associated with these boundary conditions is 
equivalent to solving the first-order system. We first define parts of the boundary as follows: 

Ti, the entrance section where qm * n < 0 
r,, the exit section where qm .n>O 
r,, the wing contour or surface where q.n=O is imposed 

rs, the part of the exterior boundary where q*n=O is imposed (for instance by symmetry). 

We then set the conditions 

and define the space 

9(A)  = {fl E satisfying (6 ) ) .  

Now with ~ E E ( A )  and ~ ' E ( H ' ( Q ) ) ~  we get from (3) 

+ piiii(q - n) + pCij(q - n) + ( y  - l)pZ(ij - n) 

+ piiii(ij - n) + poi?(ij - n)Jda 

+ Q u 2 ~ ( 4 - n )  ++pu2Z(a-n) 

+ puiiZ(q - n) + puZ(q - n)]do. 
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Thus with q.n=O on r, u r,, in addition to (6) we get the adjoint boundary conditions 

i U = O  on r, 
q . n = 0  on rwu I-,, 

and define the space 

9 ( A * ) =  ( ~ E ( H ' ( Q ) ) ~ ;  U satisfies (7)). 

Then from equation (5) with U E P(A)  we get 

(7) 

(A*(AO-F), U)=(G(ZI), U) 
if Afr - F E 9 ( A * )  (which needs the additional regularity U E Yl). Finally, (4) is equivalent to 
solving 

A*(AZI) = A*F in R, 
fr E 9(A) ,  (8) 
A 0  - F E 9 ( A * )  1 

and this problem is equivalent to the initial linear problem (3) under the condition that A* is a one- 
to-one operator and admits a unique solution under the condition that A is a one-to-one operator. 

We see that on To, where no condition is given, the least squares formulation forces the 
equations to be satisfied and yields a well posed linear problem, the solution of which can be 
computed without artifacts (artificial viscosity or Kutta condition). 

Remark. Here the condition q -  n = O  reduces to u =O or w =0, but for more complex geometries 
it is not so easy to irnrose such a non-linear condition; once again the least squares formulation is 
helpful because we can add a boundary term in the functional J(0) as fol10ws:~ 

; C(q-q)'n12dol 

and thus the next iterate U,, , of the Newton method satisfies the tangency condition on the wing. 

APPROXIMATION 

In order that this paper be relatively self-contained, we give a short description of the finite 
element approximation. Let W be a Hilbert space on which is set a variational problem 

find U E  W such that i u(u, u ) = / ( c ' )  V U €  w, (9) 

where u is a W-elliptic continuous bilinear form and 1 is a continuous linear form on W; the 
purpose of the finite element method is to construct a finite-dimensional space wh approximating 
W such that either W, c W or W, @ W. We restrict our study to the conforming case ( W, c W )  for 
which the approximated variational problem reads 

where u and I have the same definition. If we define Wh and construct its basis, the problem (10) is 
completely determined and yields a linear system we can solve by any inversion method. 

Now we see how to construct a conforming approximation of the space H ' ( Q )  by means of a Q' 
finite element in a regular domain of R3. Let K be a regular hexaedron in R3 with vertices (UJ ,  
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k = I ,  . . . , 8; we define the set of degrees of freedom 

~ ‘ K = { I k : P E P K ~ p ( U k ) E a B ; k = l , .  . . 3 8 )  

and the space of polynomials 

P,  = span { I ,  x, y ,  z ,  xy,  xz ,  y z ,  .uyz ); 

then Q1 denotes the finite element ( K ,  C,, PK). In a regular domain as shown in Figure 1 we can 
easily construct a mesh made of regular hexahedra and define the space 

Wh={w, ,€Co(f i )  such that w h / K € Q 1  for each K } ,  

the dimension of which is equal to the number of vertices (q), i = 1, . . . , I, of the mesh and the basis 
of which is given by +i(uj)= hi,, 1 < i, j 6 I, where hi j  is the Kronecker symbol. Moreover, this space 
is included in H ’ ( Q )  and then (10) is a conforming approximation of (9). 

$ ’, = { U h  U, > O  such that every group of approximate variables ( P h U h ,  . . . ) belongs 

Fh= (O ,E(L~(Q) )~  such that every group of mixed approximate variables (&Uh, . . . ) belongs 

Here we introduce the spaces 

to WrJ, 

to wh)? 
gh(A)= { o h  E Fh Satisfying (6)) 

and the approximate problem of (4) reads 

This problem is a conforming approximation of (4) with a centred scheme where not the 
unknowns separately but the groups of variables are approximated by the finite element method; 
for instance, we write 

where (du), = p,u, is the value of the group &,Uh at the vertex u, of the mesh. This is the main point of 
the approximation; indeed, requiring i j h  and u h  separately to belong to wh would impose too much 
regularity on the variables and would no[ allow the shocks and the contact discontinuities. 
Furthermore, this is the more natural way to realize a conforming approximation of the space 
9 ( A )  and we have the following result: 

problem (1 1) admits a unique solution D h €  cSh(A). 

Proof: Obviously the result will be achieved if we prove that IAOh1,12(R)4 is a norm over the space 
Oh(A). In order to simplify the proof, we consider a mesh in a 2D tube and K =[O, 13 x [O, 13; we 
denote by fihuh/K the restriction of i j h U h  to K .  As a first step we show that if A n h  vanishes on K ,  
then a h / K = O .  A polynomial of Q l  is written in its general form u+hx+cy+dxy ,  but with the 
boundary conditions upstream it reduces to bx + dxy; moreover, as v h  and 6, vanish at point (1,0), 
we have 

d h U h / K  =pi  = h i X  + d i x y ,  b h v h / K  = p z  =dZxq’, 

p h i i h / K = p , = h 3 x + d 3 x y ,  p h c h / K  = p a =  d4Yy. 
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t' 

I 
Figure 1. Domain 

But from the first equation we have 

aP1 a P 2  a P 3  a P  
ax ay ax ay 
- + -+-+>= 0 0 b ,  + b3 + (d2 + d4)x + (d ,  + d3)y =O; 

then we get p 1  + p 3  = 0 and p 2  +p4 =O. But also we have 

and the second equation 

-- ap5 aP6 aP7 a P S  - +-+-+-=o 
ax ax ax ay 

then d ,  =o and phfihvh/K rO On K .  
Proceeding in the same way with the third equation, we get phuhi&/K -0 on K and, as qh cannot 

vanish on an element, we have either iiJK = 0 or CJK = 0 and consequently gs +p7  = 0 (indeed 
Gh/K = 0 implies p s  = 0); thus we get iiJK = 0 from the equalities p 1  + p 3  = p 2  + p4 = p s  + p7 = 0. 
Now marching element by element on the first row from left to right, we get that ah vanishes on this 
first row. On the first element of the second row a polynomial of Ql reduces now to dxy and we 
can apply the same method to show that f l h  vanishes on this element, then on the second row and 
finally everywhere on Q; so IAflhI(L2(n))4 is a norm over Qh(A). 

Now the unique solution of problem ( 1  1 )  will be obtained by solving a linear system which, 
unfortunately, is not so easy to invert as we shall see in the next section. 
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STUDY AND INVERSION OF THE LINEAR SYSTEM 

Let (1 1) be written in its matrix form: 

find the vector X such that 
SX=Y.  

We first look at the properties of the matrix S. From the least squares minimization and the proof 
above we know that S is a symmetric positive definite matrix. But if A is a one-to-one operator on 
Bh(A), it is not true in general on 9(A); then A can have a kernel and a zero in its spectrum, so we 
can expect the matrix S to have small eigenvalues. Indeed, if the kernel is not included in $&(A), its 
eigenvectors can be approached by the conforming method and thus the smallest eigenvalue of S 
should become smaller and smaller as the mesh size h goes to zero. We used the algorithm 
developed in Reference 7 based on a Lanczos tridiagonalization without reorthogonalization to 
compute the eigenvalues of S and found that the smallest eigenvalue decreases and the 
conditioning increases when h becomes smaller. This is illustrated in Table I at the first step of the 
Newton method with U, uniformly defined equal to the values of the incoming flow for Mach 
number A4 = 0.7 and an angle of attack a = 15" (the results are about the same for M =2, a = 10" 
and if U, is replaced by an iterated solution); so we have to find the right method to solve (12). 

For our regular domain (see figure 1) S is a block-structured symmetric matrix where each block 
represents the contribution of a vertical plane parallel to (0, y, z) and (12) can be rewritten as a 
block tridiagonal system: 

Until now, the most efficient way we have found to solve this system is to use a block successive 
over-relaxation (BSOR) algorithm where the diagonal blocks En are inverted by the incomplete 
Cholesky conjugate gradient (ICCG) method. However, the En blocks are so ill conditioned that 
we need an additional shifting term to stabilize the whole process; thus the shifted block successive 
over-relaxation (SBSOR) algorithm reads 

where /3,0 < /3 < 1, is the shift parameter, o, 1 ,< o < 2, is the over-relaxation parameter and D, is 
the main diagonal of E,. Of course if 0 = 0 we have the usual BSOR algorithm, and if we add the 
whole block En instead of D, in (14) we have also the usual BSOR algorithm with a new relaxation 
parameter 6 = o/( 1 + 6). What we want to do is to correct the conditioning of the blocks we have to 

Table I 

Number of 
h unknowns Smallest eigenvalue Largest eigenvalue Conditioning 

00475 1470 0.4248 x 8.63 020316 x lo6 
7700 0.8401 x lo-' 6.86 081694 x lo6 0021 1 

0.0 1 53200 0.1294 x lo-' 8.24 063671 x lo7 
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invert; this is achieved by the consistent algorithm (14) for which we do not know how to prove 
the convergence compared with that of the BSOR algorithm. Nevertheless, we show numerically 
on the Laplace problem in the square (0,l)  x (0, 1) that the algorithm (14) converges as illustrated 
in Table 11 and in Figure 2 where the convergence history for several values of fl is plotted. 

Thus we have to take fl as small as possible; in practice we set fl=O.1 and w= 1.5 for our 
problem. As solving (14) is embedded into the iterations of the Newton linearization , it is not 

Table I1 

Mesh size w B Error Number of iterations 

0 0.31 x 1 0 - 3  13 
0.1 1.41 0.1 0.36 x 1 0 - 3  25 

0.5 0 4 6  x 10- 3 65 
I 0.48 x 10-3  1 I4 
0 0.15 x 10-3 30 

0.05 1.64 0.1 0-17 x 10-3 78 
0.5 0.20 x 10-3 243 
1 0.20 x 10-3 449 
0 0.95 x 10-4 83 

0.02 1.84 0.1 0.98 x 10-4 388 
0.5 0.99 x 10-4 1486 
1 - - 

11 L 1 .2e+C.  

p = o  

0 p = 0.1 
.2e+00 

0 6 = 0.5’ 

n P = 1  

L 

0, .2e-01 
L 
W 

. 2 e  -02 

1 113 225 337 449 
I terotions 

Figure 2. Convergence history of SBSOR algorithm with respect to BSOR algorithm for mesh size h=0.05 
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necessary to compute X very accurately, so a few iterations (5-10) of SBSOR is enough. Moreover, 
setting the parameter f i  to a good value improves the efficiency of the ICCG method and yields a 
very good solution rapidly; otherwise ( f i  too small) the ICCG method cannot converge and the 
approximated X, are spoiled. 

VECTORIZATION OF PROGRAMS 

The programs run on a CRAY-2 and the main part of the CPU time is devoted to the construction 
and inversion of system (1 3), so we shall speak only of the vectorization of these two actions. With 
the approximation of groups of variables described above, the assembling of the matrix is reduced 
to a product of an initial matrix and a vector; for instance, the term 

yields the matrix coefficients 

a4i a4j dxdy uiuj -__ s ax ax 
for 1 ,<id1 and somej corresponding to the basis functions Cbj whose support intersects with the 
support of bi. For a regular domain these indices j are always the same with respect to i and S is a 
multidiagonal matrix which can be easily computed knowing the initial matrices DXX, DXY, etc. 
representing the terms 

so we use the huge memory of CRAY-2 to store these initial matrices and then the assembling of 
the matrix at each iteration of the Newton linearization is written as follows. 

For idiag= 1 to the number of diagonals of a block do: 

n j  = the position of the diagonal idiag with respect to the main diagonal. 
For idlib= 1 to I do: 

jdlib = idlib + nj, 
E,(idlib, idiag)=u(idlib) x (DXX(idlib, idiag) x u(jd1ib) 

+DXY(idlib, idiag) x u(jdlib))+ . . . , 
End. 

End 

Thus the inner loop of large size is vectorized. For an irregular domain we can do the same with an 
outer loop to the number of non-zero terms and the use of the function GATHER to avoid the 
indirect addressing of jdlib in the sequence above. So in both cases the assembling is highly 
vectorizable. 

For the inversion of the blocks in (14) the vectorization is u priori more difficult because the 
Cholesky factorization is a typical operation which involves dependency, but we benefit from the 
5 x 5 block structure related to the five unknowns in dimension three. Indeed, each block En or F, is 
divided into 25 equal sub-blocks and the Cholesky factorization is always vectorizable except 
when it occurs on the same sub-block; so about 80% of the factorization is vectorized and we 
reach a very good performance in terms of MAops on the whole program. 
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NUMERICAL RESULTS 

In this section we present results illustrating the influence of mesh size, angle of attack and Mach 
number at infinity on the solution. In Figure 3 we show the two meshes in a cross-plate section; the 
coarse one is only 14 x 9 x 9 and the second one is 28 x 18 x 18 cells around the same flat plate 
without thickness. The numbers of variables are respectively 8250 and 55100. 

The solution for M ,  = 0 7  and a= 15" is shown in Figure 4-7 in cross-flow sections and on the 
upper side of the plate; we see that the vortex structure rolls up at the tip of the plate with a typical 

1 

1 

1 

1 

1 

1 

I 

T 

\ L '  r J  T 
1 1 '  1 1  T 

Figure 3. Meshes in a cross-plate section 

(a) 14 x 9 x 9 cells 

(b) 28 x 28 x 18 cells 
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I I . , , * .  
I f . . , , .  . . . . . . .  I 1 
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Figure 4. Comparison of the cross-flow velocities at 60% of the plate for the two meshes (M, =0.7, a = 15") 
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Figure 5. Comparison of isobars in a cross-plane at 60% of the plate for the two meshes (M,=0.7, a= 15") 

I..N 

Figure 6. Comparison of isobars in a cross-plane at the trailing edge for the two meshes ( M ,  =07, a= 15")  

aspect of the isobar lines as shown in Figure 7. Of course the solution is better represented by the 
finer mesh, although the vortex centre is located at the same place in both cases. Thus our method 
is able to capture the main behaviour of the flow even with a coarse mesh. 

We now see the influence of the angle of attack by comparing Figures 4-7 for the finer mesh 
with Figures 8-10 where the solution for a higher angle of attack, a=30", is plotted. One can see 
clearly that the size of the vortex structure and the amplitude of the pressure jump on both sides of 
the plate are linked directly to the angle of attack. 

Finally, we have done computations for supersonic flows with M ,  = 2 and a = lo"; we notice 
that the vortical phenomenon is again well captured, as shown in Figures I 1  and 12. In this case 
the vortex is closer to the plate and perturbations in pressure and flow direction are visible near 
the upper boundary which is located not very far away. 

It is interesting to note that solving the steady energy equation does not imply that the total 
enthalpy is constant everywhere, but the results indicate that the error on total enthalpy does not 
exceed 3% and that the maximum is reached in the vortex core. 
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Figure 7. Comparison of isobars on the upper plate for the two meshes ( M  , =0.7. ct= 15"); 
pressure of the incoming flow. p x  =0.975 

CONCLUSIONS 

The method presented in this paper is able to capture vortical effects in subsonic flows as well as in 
supersonic flows. We have shown from a mathematical point of view that the least squares 
formulation is equivalent to the original first-order Euler system. We have imposed all the flow 
variables at  the entrance boundary and no condition at the exit boundary in both subsonic and 
supersonic flows, and we were able to compute solutions for various Mach numbers and angles of 
attack. However, in supersonic flow, when the incidence is larger than the characteristic cone half- 
angle, the boundary conditions coincide with the usual ones. 

All the computations have been performed without the use of artificial viscosity. The centred 
finite element scheme of second-order accuracy employed in the solution procedure is stable 
owing to its inherent dissipative properties, which may explain why there is no need for a Kutta 
condition at the plate edges to provoke the shedding of vorticity. 
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Figure 8. Cross-flow velocities at 60% of the plate and at the trailing edge for M I  =0.7 and x = 3 0  
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Figure 9. Isobars in cross-planes at 60% of the plate and at the trailing edge for M I  =0.7 and x = 3 0 '  
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Moreover, we still get a vortex flow in a hypersonic case with M = 5  and x =  10" as illustrated 
in Figure 13; this shows the robustness of the method. 

1 
1 
I 
I 
1 

1 

,I 

AC K N 0 W LEDG EM ENTS 

This work was performed with financial support from DRET and under grants from C'VR, Ecole 
Polytechnique, France. 



f Y  

Figure 10. Isobars on the upper plate for M ,  =0.7 and a=3W 
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Figure 11. Cross-flow velocities at 60% of the plate and at the trailing edge for M , = 2  and a= lW 

Figure 12. Isobars in cross-planes at 60% of the plate and at the trailing edge for M , = 2  and a= lo" 
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Figure 13. Hypersonic solution at the trailing edge (M, = 5, E =  lOq 
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